目前正在辩论中,将人工智能应用于科学问题(即科学的AI)。但是,科学问题与传统的问题,图像,文本等等传统问题有很大不同,在这些问题中,由于不平衡的科学数据和物理设置的复杂效果出现了新的挑战。在这项工作中,我们证明了深卷卷神经网络(CNN)在存在强热波动和不平衡数据的情况下重建晶格拓扑(即自旋连接性)的有效性。以Glauber动力学为例,以动力学模型为例,CNN映射了从特定的初始配置(称为演化实例)演变为时期的局部磁矩(单个节点特征),以映射到概率的概率可能的耦合。我们的方案与以前可能需要有关节点动力学的知识,来自扰动的响应或统计量的评估(例如相关性或转移熵)与许多进化实例的评估。微调避免了高温下强烈的热波动引起的“贫瘠高原”。可以进行准确的重建,如果热波动在相关性上占主导地位,从而总体上失败的统计方法。同时,我们揭示了CNN的概括,以处理从不太初始旋转构型和带有未经晶格的实例演变而来的实例。我们在几乎“双重指数”大型样本空间中使用不平衡的数据提出了一个关于学习的公开问题。
translated by 谷歌翻译
胸部X射线(CXR)图像中的肺结节检测是肺癌的早期筛查。基于深度学习的计算机辅助诊断(CAD)系统可以支持放射线医生在CXR中进行结节筛选。但是,它需要具有高质量注释的大规模和多样化的医学数据,以训练这种强大而准确的CAD。为了减轻此类数据集的有限可用性,为了增加数据增强而提出了肺结核合成方法。然而,以前的方法缺乏产生结节的能力,这些结节与检测器所需的大小属性相关。为了解决这个问题,我们在本文中介绍了一种新颖的肺结综合框架,该框架分别将结节属性分为三个主要方面,包括形状,大小和纹理。基于GAN的形状生成器首先通过产生各种形状掩模来建模结节形状。然后,以下大小调制可以对像素级粒度中生成的结节形状的直径进行定量控制。一条粗到细门的卷积卷积纹理发生器最终合成了以调制形状掩模为条件的视觉上合理的结节纹理。此外,我们建议通过控制数据增强的分离结节属性来合成结节CXR图像,以便更好地补偿检测任务中容易错过的结节。我们的实验证明了所提出的肺结构合成框架的图像质量,多样性和可控性的增强。我们还验证了数据增强对大大改善结节检测性能的有效性。
translated by 谷歌翻译
由不同形状和非线性形状变化引起的机器官的大变形,对医学图像配准产生了重大挑战。传统的注册方法需要通过特定变形模型迭代地优化目标函数以及细致的参数调谐,但在具有大变形的图像中具有有限的能力。虽然基于深度学习的方法可以从输入图像到它们各自的变形字段中的复杂映射,但它是基于回归的,并且容易被卡在局部最小值,特别是当涉及大变形时。为此,我们呈现随机策划者 - 演员 - 评论家(SPAC),这是一种新的加强学习框架,可以执行逐步登记。关键概念通过每次步骤连续地翘曲运动图像,以最终与固定图像对齐。考虑到在传统的强化学习(RL)框架中处理高维连续动作和状态空间有挑战性,我们向标准演员 - 评论家模型引入了一个新的概念“计划”,这是低维度,可以促进演员生成易于高维行动。整个框架基于无监督的培训,并以端到端的方式运行。我们在几个2D和3D医学图像数据集上评估我们的方法,其中一些包含大变形。我们的经验结果强调了我们的工作实现了一致,显着的收益和优于最先进的方法。
translated by 谷歌翻译
训练无模型的深度加强学习模型来解决图像到图像转换是困难的,因为它涉及高维连续状态和动作空间。在本文中,我们借鉴了最近的最大熵增强学习框架成功的灵感来设计用于挑战连续控制问题,在包括图像表示,产生和控制的高维连续空间上开发随机策略。这种方法的核心是随机演员 - 执行程序 - 批评者 - 评论家(SAEC),这是一个违法的演员 - 评论家模型,具有额外的excator来生成现实图像。具体地,该actor通过随机潜行动作侧重于高级表示和控制策略,以及明确地指示执行器生成用于操纵状态的低级动作。关于若干图像到图像转换任务的实验已经证明了在面对高维连续空间问题时所提出的SAEC的有效性和稳健性。
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
In this work a novel recommender system (RS) for Tourism is presented. The RS is context aware as is now the rule in the state-of-the-art for recommender systems and works on top of a tourism ontology which is used to group the different items being offered. The presented RS mixes different types of recommenders creating an ensemble which changes on the basis of the RS's maturity. Starting from simple content-based recommendations and iteratively adding popularity, demographic and collaborative filtering methods as rating density and user cardinality increases. The result is a RS that mutates during its lifetime and uses a tourism ontology and natural language processing (NLP) to correctly bin the items to specific item categories and meta categories in the ontology. This item classification facilitates the association between user preferences and items, as well as allowing to better classify and group the items being offered, which in turn is particularly useful for context-aware filtering.
translated by 谷歌翻译
The Internet of Senses (IoS) holds the promise of flawless telepresence-style communication for all human `receptors' and therefore blurs the difference of virtual and real environments. We commence by highlighting the compelling use cases empowered by the IoS and also the key network requirements. We then elaborate on how the emerging semantic communications and Artificial Intelligence (AI)/Machine Learning (ML) paradigms along with 6G technologies may satisfy the requirements of IoS use cases. On one hand, semantic communications can be applied for extracting meaningful and significant information and hence efficiently exploit the resources and for harnessing a priori information at the receiver to satisfy IoS requirements. On the other hand, AI/ML facilitates frugal network resource management by making use of the enormous amount of data generated in IoS edge nodes and devices, as well as by optimizing the IoS performance via intelligent agents. However, the intelligent agents deployed at the edge are not completely aware of each others' decisions and the environments of each other, hence they operate in a partially rather than fully observable environment. Therefore, we present a case study of Partially Observable Markov Decision Processes (POMDP) for improving the User Equipment (UE) throughput and energy consumption, as they are imperative for IoS use cases, using Reinforcement Learning for astutely activating and deactivating the component carriers in carrier aggregation. Finally, we outline the challenges and open issues of IoS implementations and employing semantic communications, edge intelligence as well as learning under partial observability in the IoS context.
translated by 谷歌翻译
Morality in dialogue systems has raised great attention in research recently. A moral dialogue system could better connect users and enhance conversation engagement by gaining users' trust. In this paper, we propose a framework, MoralDial to train and evaluate moral dialogue systems. In our framework, we first explore the communication mechanisms of morality and resolve expressed morality into four sub-modules. The sub-modules indicate the roadmap for building a moral dialogue system. Based on that, we design a simple yet effective method: constructing moral discussions from Rules of Thumb (RoTs) between simulated specific users and the dialogue system. The constructed discussion consists of expressing, explaining, and revising the moral views in dialogue exchanges, which makes conversational models learn morality well in a natural manner. Furthermore, we propose a novel evaluation method in the framework. We evaluate the multiple aspects of morality by judging the relation between dialogue responses and RoTs in discussions, where the multifaceted nature of morality is particularly considered. Automatic and manual experiments demonstrate that our framework is promising to train and evaluate moral dialogue systems.
translated by 谷歌翻译
Multivariate time series forecasting constitutes important functionality in cyber-physical systems, whose prediction accuracy can be improved significantly by capturing temporal and multivariate correlations among multiple time series. State-of-the-art deep learning methods fail to construct models for full time series because model complexity grows exponentially with time series length. Rather, these methods construct local temporal and multivariate correlations within subsequences, but fail to capture correlations among subsequences, which significantly affect their forecasting accuracy. To capture the temporal and multivariate correlations among subsequences, we design a pattern discovery model, that constructs correlations via diverse pattern functions. While the traditional pattern discovery method uses shared and fixed pattern functions that ignore the diversity across time series. We propose a novel pattern discovery method that can automatically capture diverse and complex time series patterns. We also propose a learnable correlation matrix, that enables the model to capture distinct correlations among multiple time series. Extensive experiments show that our model achieves state-of-the-art prediction accuracy.
translated by 谷歌翻译
We present a machine-learning framework to accurately characterize morphologies of Active Galactic Nucleus (AGN) host galaxies within $z<1$. We first use PSFGAN to decouple host galaxy light from the central point source, then we invoke the Galaxy Morphology Network (GaMorNet) to estimate whether the host galaxy is disk-dominated, bulge-dominated, or indeterminate. Using optical images from five bands of the HSC Wide Survey, we build models independently in three redshift bins: low $(0<z<0.25)$, medium $(0.25<z<0.5)$, and high $(0.5<z<1.0)$. By first training on a large number of simulated galaxies, then fine-tuning using far fewer classified real galaxies, our framework predicts the actual morphology for $\sim$ $60\%-70\%$ host galaxies from test sets, with a classification precision of $\sim$ $80\%-95\%$, depending on redshift bin. Specifically, our models achieve disk precision of $96\%/82\%/79\%$ and bulge precision of $90\%/90\%/80\%$ (for the 3 redshift bins), at thresholds corresponding to indeterminate fractions of $30\%/43\%/42\%$. The classification precision of our models has a noticeable dependency on host galaxy radius and magnitude. No strong dependency is observed on contrast ratio. Comparing classifications of real AGNs, our models agree well with traditional 2D fitting with GALFIT. The PSFGAN+GaMorNet framework does not depend on the choice of fitting functions or galaxy-related input parameters, runs orders of magnitude faster than GALFIT, and is easily generalizable via transfer learning, making it an ideal tool for studying AGN host galaxy morphology in forthcoming large imaging survey.
translated by 谷歌翻译